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1.  Learning Outcomes 

After studying this module, you shall be able to  

 Understand the difference between an ideal classical gas and an ideal quantum gas arising 

because of indistinguishability of particles leading to quantum effects not observed 

classically.    

 Understand the relevance of mean thermal wavelength or thermal de Broglie wavelength  

as a deciding parameter to characterize when are the quantum effects significant. 

 Understand how the behavior of a Fermi gas is different from  a classical ideal gas 

 Understand when is fermi gas said to be degenerate 

 Learn that since at  𝑻 = 𝟎 fermi distribution has a simple form, and therefore, various 

physical quantities such as  Number Density, Fermi wave vector, Fermi momentum, 

Fermi Energy and  Fermi Temperature of fermi gas at 𝑻 = 𝟎  can be easily calculated 

 Learn that at 𝑻 ≠ 𝟎, fermi distribution does not remain a step function and around 𝝐𝑭 in 

width approximately 𝟐𝒌𝑩𝑻, it changes which influences all the properties and 

calculations become tricky.  

 Calculate  thermodynamic properties viz equation of state, number density, internal 

energy, specific heat, Helmholtz free energy and entropy  of a fermi gas   at 𝑻 ≠ 𝟎  

involving fermi integrals. 

  Learn that the non-degenerate fermi gas, for which  
𝑵𝝀𝟑

𝑽𝓖
 ≪ 𝟏, behaves like a classical 

ideal gas. 

 Apply Sommerfeld’s approach to solve fermi integrals  and revisit the thermodynamic 

properties of a fermi gas at  finite but low temperature. 

 Understand the behavior of an ideal fermi gas in the presence of an external magnetic 

field where application of fermi-dirac statistics leads to pauli paramanetism and landau’s 

diamagnetism. First one arising from the contribution of alignment of spin of electrons in 

the direction of the applied magnetic field and the second one arising from the lorentz 

force experienced by the moving electrons in the presence of a magnetic field producing 

an induced current opposing the applied magnetic field. 

 Calculate Pauli’s spin susceptibility at 𝑻 = 𝟎 and at 𝑻 ≠ 𝟎.  

 Know that how motion of electrons in a magnetic field gives rise to Landau levels  and 

lead to curie like diamagnetic susceptibility. 

2.  Introduction 

In module XV various thermodynamic properties for Fermi-Dirac cases from the 

knowledge of partition function in Grand Canonical Ensemble were obtained. In this 

module we shall apply these results  to the case of an ideal Fermi gas or non-interacting 

Fermi gas. The non-interacting nature of the gas allows us to treat each particle 

independently except for the quantum effect introduced by Pauli’s Exclusion Principle. 

Each particle can be assigned a single particle state with energy specific to that state as 

we saw in Module XVII. This inherent interaction manifested itself in the form of 

antisymmetric nature of the wave function. However, it is important to realize that 

quantum effects become pronounced when the inter-particle distance between the 

particles is comparable to their average de Broglie Wavelength and wave functions of 

different particles overlap and system can-not be treated classically. The gas is then said 
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to be degenerate. This happens when fermion gas has very low temperature or very high 

density. 

We derived in earlier modules expectation value of  the number  of particles in the state    

 
〈 𝒏𝒌〉 =

𝟏

(𝒆
𝝐𝒌−𝝁

𝒌𝑩𝑻 + 𝟏)

 
(1) 

 Which when treated as a function of E, gives us the Fermi-Dirac Distribution function 

 
𝒇(𝝐𝒌) =

𝟏

(𝒆
𝝐𝒌−𝝁

𝒌𝑩𝑻 + 𝟏)

 
(2) 

The plot of 𝒇(𝝐𝒌) for different values of 𝑻 is given in figure 1 below: 

 

Figure 1 Fermi distribution function for different values of temperature T >0 

Fermi distribution function in the limit 
𝝐𝒌−𝝁

𝒌𝑩𝑻
≫ 𝟏, the equation transforms into 𝒆

−
𝝐𝒌−𝝁

𝒌𝑩𝑻  

which is nothing but Boltzmann distribution function. 

The total number of fermi particles is then given by 

 
𝑵 =∑𝒇(𝝐𝒌)

𝒌

=∑
𝟏

(𝒆
𝝐𝒌−𝝁

𝒌𝑩𝑻 + 𝟏)𝒌

 
(3) 

𝜖𝑘

𝜇
  

𝑓(𝜖𝑘)  

𝑘𝐵𝑇

𝜇
=0.0015 

𝑘𝐵𝑇

𝜇
=0.1 

𝑘𝐵𝑇

𝜇
=0.5 
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At 
𝝁

𝒌𝑩𝑻
≫ 𝟏 and 𝝐𝒌 − 𝝁 ≪ 𝟎, 𝒇(𝝐𝒌) = 𝟏. At 𝝐𝒌 = 𝝁, 𝒇(𝝐𝒌) =

𝟏

𝟐
. At T=0 Fermi 

distribution is given in figure 2. And it can be represented as 

 
𝒇(𝝐𝒌) =  {

𝟏 𝒇𝒐𝒓 𝝐𝒌 < 𝝁𝟎
𝟎 𝒇𝒐𝒓 𝝐𝒌 > 𝝁𝟎 

 
(4) 

Here 𝝁𝟎 is chemical potential of the fermi gas at 𝑻 = 𝟎. Most commonly it is known as 

fermi energy 𝝁𝟎 = 𝝐𝑭. Accordingly all the states up to 𝝐𝑭 are completely filled and above 

it are completely empty.  We can, therefore, also define Fermi  wave vector 𝒌𝑭, fermi 

momentum 𝒑𝑭 = ℏ𝒌𝑭 giving Fermi energy   𝝐𝑭 =
𝒑𝑭
𝟐

𝟐𝒎
=

ℏ𝟐𝒌𝑭
𝟐

𝟐𝒎
.  The summation in 

equation (3) above can be converted into an integral over 𝒌, with  various energy levels  

𝝐𝒌 

 

∑𝒇(𝝐𝒌)

𝒌

=

{
 
 
 
 

 
 
 
 

𝑽

(𝟐𝝅)𝟑
∫𝒇(𝝐𝒌)𝒅

𝟑𝒌  𝒊𝒏 𝒕𝒉𝒓𝒆𝒆 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

𝑨

(𝟐𝝅)𝟐
∫𝒇(𝝐𝒌)𝒅

𝟐𝒌  𝒊𝒏 𝒕𝒘𝒐 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

𝑳

(𝟐𝝅)
∫𝒇(𝝐𝒌) 𝒅𝒌  𝒊𝒏 𝒐𝒏𝒆 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏

𝑳𝒅

(𝟐𝝅)𝒅
∫𝒇(𝝐𝒌)𝒅

𝒅𝒌  𝒊𝒏  𝒅 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

  

(5) 

Where 
𝑳𝒅

(𝟐𝝅)𝒅
 is the density of states in d dimensions. 

If 𝓖 denotes the internal degeneracy factor for spin the number of states get multiplied by 

it. For example in the case of spin  of an electron 𝓖 = 𝟐, one corresponding to spin up (+ 

½ ) and the other corresponding to spin down ( -½).       

Figure 2 Fermi distribution function at T=0 

𝜖𝑘    

𝑓(𝜖𝑘)    

1   

𝜇𝑜 = 𝜖𝐹    

𝜖𝐹    
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3.  Degenerate Fermi Gas 

The name degenerate has a special significance here, a system of fermions say electrons 

is said to degenerate if the average de Broglie wavelength which we encountered earlier 

in module one is comparable to or much larger than the average particle distance such 

that their wave functions overlap and that this overlap cannot be ignored and the system 

can no longer be treated as classical and must be treated quantum mechanically. It is 

expected that systems at low 𝑻 that is at high value of 𝜷 will be degenerate. However, a 

system at high temperatures can be degenerate provided they have high chemical 

potential. In the case of metals Fermi temperature 𝑻𝑭 =
𝝐𝑭

𝒌𝑩
~𝟒 × 𝟏𝟎𝟓K. which is much 

higher than room temperature and system should be treated quantum mechanically.    

4.  Ideal Fermi Gas at T=0 

At T=0, because of simple form of distribution function, equation (4) calculation of 

various physical quantities becomes simple. Let us look at the calculation of number 

density, energy density and pressure of fermi gas at 𝑻 = 𝟎.  

 

 

(a) Number density: 

Note  

 
𝑵 =∑𝒇(𝝐𝒌)

𝒌

= 
𝓖 𝑽

(𝟐𝝅)𝟑
∫  𝒅𝟑𝒌   

(6) 

 

𝑵 =  
𝓖 𝟒 𝛑𝑽

(𝟐𝝅)𝟑
 ∫ 𝒌𝟐𝒅𝒌

𝒌𝑭

𝟎

  

(7) 

 
𝑵 =  

𝓖 𝑽

𝟑 𝝅𝟐
 𝒌𝑭
𝟑   

(8) 

 𝑵

𝑽
=  

𝓖𝒌𝑭
𝟑  

𝟑 𝝅𝟐
   

(9) 

   

(b) Fermi wave vector, Fermi momentum,  Fermi Energy and Pressure 

Thus the Fermi wave vector 𝒌𝑭 is given by 

 

𝒌𝑭 = (
𝟑𝝅𝟐𝑵

𝓖𝑽
)

𝟏

𝟑

 

(10) 
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and Fermi momentum 𝑷𝑭 is given by 𝑷𝑭 = 𝒉 𝒌𝑭 

The energy of the highest occupied k level at 𝑻 = 𝟎 i.e. of 𝒌𝑭 is 

 

𝝐𝑭 =
ℏ𝟐𝒌𝑭

𝟐

𝟐𝒎
  =

ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝓖𝑽
)

𝟐

𝟑

 

(11) 

The total energy, 𝑬𝒐 of fermions at 𝑻 = 𝟎 can be calculated by summing kinetic energy 

over all the states up to Fermi level with 𝒌 = 𝒌𝑭: 

 

𝑬𝒐 =∑
ℏ𝟐𝒌𝟐

𝟐𝒎
𝒌

  =  
𝓖 𝟒 𝛑𝑽

(𝟐𝝅)𝟑
 
ℏ𝟐

𝟐𝒎
∫ 𝒌𝟒𝒅𝒌

𝒌𝑭

𝟎

=
𝓖 𝑽

𝟐 𝝅𝟐
 
ℏ𝟐

𝟐𝒎

𝒌𝑭
𝟓

𝟓
 

(12) 

Or 
𝑬𝒐  =

𝓖 𝑽

𝟐 𝝅𝟐
 
ℏ𝟐𝒌𝑭

𝟐

𝟐𝒎

𝒌𝑭
𝟑

𝟓
=
𝓖 𝑽

𝟐 𝝅𝟐
 𝝐𝑭

𝒌𝑭
𝟑

𝟓
=
𝓖

𝟐 
 
𝟑𝑵𝝐𝑭
𝟓

 
(13) 

For electrons 𝓖 = 𝟐 is spin degeneracy, and 𝑬𝒐  =  
𝟑𝑵𝝐𝑭

𝟓𝑽
. It is interesting to note that at 

T=0, Fermi gas has non-zero kinetic energy and hence the pressure of the gas can be 

calculated: 

  

𝑷 = −
𝝏𝑬

𝝏𝑽
=  −𝝏

𝓖

𝟐 

𝟑𝑵 

𝟓
𝝐𝑭

𝝏𝑽
=
𝓖

𝟐 

𝟐𝑵 

𝟓𝑽
 𝝐𝑭  

(14) 

(c) Fermi temperature:  

We can define an equivalent temperature corresponding to Fermi energy 𝝐𝑭 as strongly 

degenerate gas.  

 

𝝐𝑭 =
ℏ𝟐𝒌𝑭

𝟐

𝟐𝒎
  = 𝒌𝑩𝑻𝑭 =

ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝑽
)

𝟐

𝟑

 

(15) 

The results derived about Fermi gas at 𝑻 = 𝟎 above are valid at 𝑻 close to zero. This 

actually implies whenever 𝑻 ≪ 𝑻𝑭. Fermi temperature 𝑻𝑭 is also known as degeneracy 

temperature. This also helps us to classify fermi gas at 𝑻 = 𝟎 as completely degenerate 

gas and for 𝑻 ≪ 𝑻𝑭 as a strongly degenerate gas.  

At room temperature (of the order of 𝟏𝟎𝟑 𝑲) simple metals such as Sodium can be 

treated as strongly degenerate Fermi System with  𝑻𝑭 being of the order of 𝟏𝟎𝟓K . It is 

the reason why quantum mechanical treatment is needed for discussing metals at room 

temperature.  
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5. Ideal Fermi gas at T≠ 0    

At 𝑻 ≠ 𝟎, Figure 1, we cannot approximate Fermi Dirac Distribution function as a step 

function with value 1 for 𝝐𝒌 < 𝝐𝑭 and 0 for 𝝐𝒌 > 𝝐𝑭. However, at low temperature graph 

for fermi distribution differs from the graph at 𝑻 = 𝟎 only around 𝝐 = 𝝐𝑭 over a width 

approximately equal to 𝟐𝒌𝑩𝑻, a small region around 𝝐𝑭. As T increases this width 

increases as is clear from figure 1. So the calculations do not remain straight forward as 

in the case of 𝑻 = 𝟎. In module 15, we wrote expressions for equation of state,  for 

average energy and average number of particles, let us evaluate these to get most 

fundamental thermodynamic properties of a fermi gas at low temperature 𝑻 ≠ 𝟎 

5.1 Thermodynamic properties 

 (a) Equation of State of a Fermi Gas 

Recalling from module 15  

 𝑷𝑽

𝒌𝑩𝑻
= 𝐥𝐧ℤ(𝒁, 𝑽, 𝑻) =  ∑𝐥𝐧(𝟏 + 𝒆

𝝁−𝝐

𝒌𝑩𝑻) = 

𝝐

∑𝐥𝐧(𝟏 + 𝒁𝒆−𝜷𝝐) 

𝝐

 
(16) 

Where, ℤ is grand partition function, =
𝟏

𝒌𝑩𝑻
 ,  𝒁 = 𝒆

𝝁

𝒌𝑩𝑻  and 𝝐 =
𝒑𝟐

𝟐𝒎
. 

On replacing summation over integration equation of state can be obtained as  

 𝑷𝑽

𝒌𝑩𝑻
=  ∑ 𝐥𝐧(𝟏 + 𝒁𝒆−𝜷𝝐) 𝝐 =

𝓖𝑽

(𝟐𝝅)𝟑
 ∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝜷𝝐) 𝒅𝟑𝒌  (17) 

Where 𝓖 is is the degeneracy factor because of the spin. 

Or 𝑷𝑽

𝒌𝑩𝑻
=   

𝓖𝑽𝟒𝝅     

(𝟐𝝅)𝟑
∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝜷𝝐)
∞

𝟎
 𝒌𝟐 𝒅𝒌   (18) 

Noting that 𝝐 =
ℏ𝟐𝒌𝟐

𝟐𝒎
, 𝒌𝟐𝒅𝒌 =

𝟏

𝟐
(
𝟐𝒎

ℏ𝟐
)

𝟑

𝟐
𝝐
𝟏

𝟐𝒅𝝐 

Or 𝑷𝑽

𝒌𝑩𝑻
=   

𝓖𝑽𝟒𝝅     

𝟐(𝟐𝝅)𝟑
∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝜷𝝐)
∞

𝟎
 (
𝟐𝒎

ℏ𝟐
)

𝟑

𝟐
𝝐
𝟏

𝟐𝒅𝝐   
(19) 

Put 𝜷𝝐 = 𝒙, equation (19) can be written as  

Or 𝑷

𝒌𝑩𝑻
=   𝓖 (

𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐
)

𝟑

𝟐
(
 𝟒  

𝝅  
)

𝟏

𝟐
∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝒙)
∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙   
(20) 

or 𝑷

𝒌𝑩𝑻
= 

𝓖

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐
∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝒙)
∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙   
(21) 
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Where 
𝟏

𝝀𝟑
= (

𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐
)

𝟑

𝟐
, and 𝝀 =

𝒉

(𝟐𝝅𝒎𝒌𝑩𝑻)
𝟏
𝟐 

 is thermal de Broglie wavelength.  

Let us see how  𝑰 = ∫ 𝐥𝐧(𝟏 + 𝒁𝒆−𝒙)
∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙  can be evaluated, it can be integrated by 

parts 

 

𝑰 = 𝐥𝐧(𝟏 + 𝒁𝒆−𝒙)𝒙𝟑/𝟐|
∞ 

𝟎
 +
𝟐

𝟑
∫

𝒁𝒆−𝒙

(𝟏 + 𝒁𝒆−𝒙)
𝒙
𝟑

𝟐𝒅𝒙

∞

𝟎

 

(22) 

Here the first term vanishes, since first term of the product vanishes at upper limit and 

second term of the limit vanishes at lower limit. 

Therefore, equation (22) reduces to  

or 

𝑰 =  
𝟐

𝟑
∫

𝟏

(𝒁−𝟏𝒆𝒙 + 𝟏)
𝒙
𝟑

𝟐𝒅𝒙

∞

𝟎

 

(23) 

 

or 
𝑷

𝒌𝑩𝑻
=  

𝓖

𝝀𝟑
(
 𝟏 

𝝅  
)

𝟏

𝟐 𝟒

𝟑
∫

𝒙
𝟑

𝟐

(𝒁−𝟏𝒆𝒙 + 𝟏)
𝒅𝒙

∞

𝟎

=
𝓖

𝝀𝟑
 𝒇𝟓

𝟐

(𝒛) (24) 

Where 𝒇𝟓
𝟐

(𝒛) =
𝟏

𝚪(
𝟓

𝟐
)
 ∫

𝒙
𝟑
𝟐

(𝒁−𝟏𝒆𝒙+𝟏)
𝒅𝒙

∞

𝟎
 , which is a generic integral of the type  

 

𝒇𝝂(𝒛) =
𝟏

𝚪(𝝂)
 ∫

𝒙 𝝂−𝟏

(𝒁−𝟏𝒆𝒙 + 𝟏)
𝒅𝒙

∞

𝟎

   
(25) 

These integrals are known as Fermi-Dirac integrals (See Appendix-A2). And for small 𝒛, 

this integral can be expanded as a convergent series such that 

 
𝒇𝝂(𝒛) = 𝒛 −

𝒛𝟐

𝟐𝝂
+
𝒛𝟑

𝟑𝝂
−⋯    

(26) 

(b) Number density 

Recall  

 
𝑵 =∑ < 𝒏𝝐 >

𝝐

= ∑
𝟏

𝒁−𝟏𝒆𝜷𝝐 + 𝟏
𝝐

 
(27) 
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Summation can be converted into an integral as 

 
𝑵 = 

𝑽𝓖

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐
∫  

𝟏

𝒁−𝟏𝒆𝜷𝝐+𝟏

∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙  = 
𝑽𝓖

𝝀𝟑
 𝒇𝟑

𝟐

(𝒁) 
(28) 

 

or 𝑵

𝑽
=  

𝓖

𝝀𝟑
 𝒇𝟑

𝟐

(𝒁) 
(29) 

Using equation (24) and (29) we can get the equation of state of the fermi gas as 

  

 
𝑷𝑽

𝑵𝒌𝑩𝑻
=
𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
  

(30) 

(c) Internal Energy 

Recalling from module XV that internal energy of a fermionic gas can be written as 

 
  𝑼 ≡ −(

𝝏 

𝝏𝜷
𝐥𝐧ℤ(𝒁, 𝑽, 𝑻)) = 𝒌𝑩𝑻

𝟐 (
𝝏 

𝝏𝑻
𝐥𝐧ℤ(𝒁, 𝑽, 𝑻))

𝒛,𝑽
 

(31) 

 

Or 
  𝑼 =  𝓖𝑽𝒇𝟓

𝟐

(𝒛)𝒌𝑩𝑻
𝟐 (
𝝏 

𝝏𝑻
 
𝟏

𝝀𝟑
    )

𝒛,𝑽
= 𝓖𝑽𝒇𝟓

𝟐

(𝒛) (
𝟐 𝝅𝒎𝒌𝑩 

 𝒉𝟐
)

𝟑

𝟐

𝒌𝑩𝑻
𝟐
𝝏 ( 𝑻)

𝟑

𝟐

𝝏𝑻

=  
𝟑

𝟐
𝒌𝑩𝑻 (

𝓖𝑽

𝝀𝟑
) 𝒇𝟓

𝟐

(𝒛)  =
𝟑

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
  

(32) 

From (30) it follows that 

  
  𝑼 =  

𝟑

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
=  
𝟑

𝟐
𝑷𝑽 

(33) 

And a general relation connecting temperature with energy density emerges in the case of 

a Fermi  gas 

 
𝑷 =

𝟐

𝟑
(
𝑼

𝑽
) 

(34) 

A formula which holds for ideal classical gas as well. 
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(d) Specific heat  

By differentiating internal energy 𝑼 (equation (32)) with respect to 𝑻  we can get the 

specific heat 𝑪𝑽 as 

 
𝑪𝑽
𝑵𝑲𝑩

= (
𝝏

𝝏𝑻
(
𝟑

𝟐
𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
)) =

𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
+
𝟑

𝟐
𝑻
𝝏

𝝏𝑻
( 

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
)

=  
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
+ 𝑻

𝟏

𝒁
 

(𝒇𝟓
𝟐

(𝒛)𝒛
𝝏𝒇𝟑

𝟐

(𝒛)

𝝏𝒛

𝝏𝒛

𝝏𝑻
 −  𝒇𝟑

𝟐

(𝒛)𝒛
𝝏𝒇𝟓

𝟐

(𝒛)

𝝏𝒛

𝝏𝒛

𝝏𝑻
 )

(𝒇𝟑
𝟐

(𝒛))

𝟐  

(35) 

Recalling that  

𝒁
 𝝏𝒇𝝂(𝒛)

𝝏𝒛
=
 𝝏𝒇𝝂(𝒛)

𝝏 (𝐥𝐧 𝒛)
= 𝒇𝝂−𝟏(𝒛) 

Equation (35) can be written as 

 

𝑪𝑽
𝑵𝑲𝑩

=  
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
+
𝟑

𝟐

𝟏

𝒁
 
𝝏𝒛

𝝏𝑻

(𝒇𝟓
𝟐

(𝒛)𝒇𝟏
𝟐

(𝒛)   −  𝒇𝟑
𝟐

(𝒛)𝒇𝟑
𝟐

(𝒛) )

(𝒇𝟑
𝟐

(𝒛))

𝟐

=
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
−
𝟑

𝟐
𝑻
𝟏

𝒁
 
𝝏𝒛

𝝏𝑻
 

(

 
 
𝟏 −

(𝒇𝟓
𝟐

(𝒛)𝒇𝟏
𝟐

(𝒛) )

(𝒇𝟑
𝟐

(𝒛))

𝟐

)

 
 

 

(36) 

Now to get  
𝝏𝒛

𝝏𝑻
 , let us recall equation (29)  

 𝒇𝟑
𝟐

(𝒁) =
𝑵𝝀𝟑

𝑽𝓖
   Then  

 𝒁
𝝏𝒇𝟑

𝟐

(𝒁)

𝝏𝒁

𝟏

𝒁

𝝏𝒁

𝝏𝑻
 =  

𝑵

𝑽𝓖

𝝏𝝀𝟑

𝝏𝑻
= −

𝟑

𝟐𝑻
 
𝑵

𝑽𝓖
 𝝀𝟑 (37) 

 

Or 𝒇𝟏
𝟐

(𝒁)
𝟏

𝒁

𝝏𝒁

𝝏𝑻
 =

𝑵 

𝑽𝓖

𝝏𝝀𝟑

𝝏𝑻
=  

𝑵

𝑽𝓖
 (−

𝟑

𝟐𝑻
𝝀𝟑) = −

𝟑

𝟐𝑻

𝑵

𝑽𝓖
𝝀𝟑 = −

𝟑

𝟐𝑻
 𝒇𝟑

𝟐

(𝒁) (38) 
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Or 
𝟏

𝒁

𝝏𝒁

𝝏𝑻
 =  −

𝟑

𝟐𝑻

𝒇𝟑
𝟐

(𝒁)

𝒇𝟏
𝟐

(𝒁)
 (39) 

Therefore, equation (36) becomes 

 

𝑪𝑽
𝑵𝑲𝑩

=  
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
+
𝟑

𝟐

𝟏

𝒁
 
𝝏𝒛

𝝏𝑻

(𝒇𝟓
𝟐

(𝒛)𝒇𝟏
𝟐

(𝒛)   − 𝒇𝟑
𝟐

(𝒛)𝒇𝟑
𝟐

(𝒛) )

(𝒇𝟑
𝟐

(𝒛))

𝟐

=
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
−
𝟗

𝟒

𝒇𝟑
𝟐

(𝒁)

𝒇𝟏
𝟐

(𝒁)
  

(

 
 
𝟏 −

(𝒇𝟓
𝟐

(𝒛)𝒇𝟏
𝟐

(𝒛) )

(𝒇𝟑
𝟐

(𝒛))

𝟐

)

 
 

= 
𝟑

𝟐

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
−
𝟗

𝟒
  

(

 
 𝒇𝟑

𝟐

(𝒁)

𝒇𝟏
𝟐

(𝒁)
−

(𝒇𝟓
𝟐

(𝒛)  )

(𝒇𝟑
𝟐

(𝒛))
)

 
 

= 
𝟏𝟓

𝟒

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
−
𝟗

𝟒
  (
𝒇𝟑
𝟐

(𝒁)

𝒇𝟏
𝟐

(𝒁)
) 

(40) 

(e) Helmholtz free energy: 

Recall that Helmholtz free energy of   is 𝑨 ≡ 𝑵𝝁 − 𝑷𝑽, for the ideal fermi gas it can 

obtained using  equation (30) as 

 𝑨 =  𝑵𝒌𝑩𝑻(𝐥𝐧𝒁 −
𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
) (41) 

(f) Entropy 

Recall entropy is given by 𝑺 ≡
(𝑼−𝑨)

𝑻
, so entropy for the fermi gascan be written as 

 𝑺 =  (
𝟓

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
− 𝐥𝐧𝒁) (42) 

The  relationships derived above   give us means to determine  properties of the ideal 

fermi gas in terms of number density (
𝑵

𝑽
), and temperature 𝑻 provided we know the 

functional dependence of parameter 𝒁 on number density and temperature 𝑻. This 

dependence is known to us via the equation (29). Though the function 𝒇𝝂(𝒁) involved 
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can be calculated numerically in the following we will confine ourselves to various 

limiting approximations of the functions involved. 

  5.2 Non-Degenerate Fermi Gas (
𝑵𝝀𝟑

𝑽𝓖
 ≪ 𝟏)  

This corresponds to a case when  𝒇𝟑
𝟐

(𝒁) =
𝑵𝝀𝟑

𝑽𝓖
 ≪ 𝟏 i.e. density of the fermi gas is very 

low and its temperature is very high or  number density may not be low but   temperature 

very high. In this case gas is said to be non-degenerate and behaves like a classical ideal 

gas. Recalling series expansion of  𝒇𝝂(𝒛) in equation (26) this implies that 𝒇𝝂(𝒛) ≅ 𝒁 and 

thermodynamic properties become 

 
𝑷𝑽

𝑵𝒌𝑩𝑻
=
𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
=
𝒁

𝒁
= 𝟏 𝒊. 𝒆. 𝑷𝑽 =  𝑵𝒌𝑩𝑻 (43) 

 

 
𝑪𝑽

𝑵𝑲𝑩
=

𝟏𝟓

𝟒

𝒁

𝒁
−
𝟗

𝟒
  (

𝒁

𝒁
) =

𝟑

𝟐
  i.e. 𝑪𝑽 =

𝟑

𝟐
 𝑵𝒌𝑩 (44) 

 

 

𝑨 =  𝑵𝒌𝑩𝑻(𝐥𝐧𝒁 −

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
) =  𝑵𝒌𝑩𝑻(𝐥𝐧𝒁 − 𝟏)

=  𝑵𝒌𝑩𝑻(𝐥𝐧 (
𝑵𝝀𝟑

𝑽𝓖
) − 𝟏) 

(45) 

 

 𝑺 =  (
𝟓

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
− 𝐥𝐧𝒁) = (

𝟓

𝟐
𝑵𝒌𝑩𝑻 − 𝐥𝐧 (

𝑵𝝀𝟑

𝑽𝓖
)) (46) 

5.3 Fermi Gas at Finite But Low Temperature (Sommerfeld’s approach): 

For discussing this we shall follow Sommerfeld’s approach, reminding ourselves that as 

temperature rises above 𝟎𝒐𝑲 to a low but finite value, the thermal excitation of the 

particles occur in a narrow range about 𝝐 = 𝝐𝑭, called fermi energy. 

To proceed further, let us revisit two results, equation (24) and (28) we obtained earlier in 

deriving equation of state, number density. These two will pave way for calculating  

internal energy, Pressure, specific heat, entropy and Helmholtz free energy.  
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(a) Equation of State & Number Density 

Or 

𝑷𝑽

𝒌𝑩𝑻
=  
𝓖𝑽

𝝀𝟑
(
 𝟏 

𝝅  
)

𝟏

𝟐 𝟒

𝟑
∫

(𝜷𝝐)
𝟑

𝟐

( 𝒆𝜷(𝝐−𝝁) + 𝟏)
𝒅(𝜷𝝐)

∞

𝟎

=
𝓖𝑽

𝝀𝟑
   

𝟏

𝚪 (
𝟓

𝟐
)
∫

(𝜷𝝐)
𝟑

𝟐

(𝒆𝜷(𝝐−𝝁) + 𝟏)
𝒅(𝜷𝝐)

∞

𝟎

=  
𝓖𝑽

𝝀𝟑
   

𝟏

𝚪 (
𝟓

𝟐
)
∫
(𝝃 + 𝜶)

𝟑

𝟐

(𝒆𝝃 + 𝟏)
𝒅𝝃

∞

−𝜶

 

 

 

 

𝑵 = 
𝑽𝓖

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐

∫  
𝟏

𝒁−𝟏𝒆𝜷𝝐 + 𝟏

∞

𝟎

  (𝜷𝝐)
𝟏

𝟐𝒅𝒙 =
𝑽𝓖

𝝀𝟑
 
𝟏

𝚪 (
𝟑

𝟐
)
∫  

(𝜷𝝐)
𝟏

𝟐

(𝒆𝜷(𝝐−𝝁) + 𝟏)
𝒅(𝜷𝝐)

∞

𝟎

=
𝑽𝓖

𝝀𝟑
 
𝟏

𝚪 (
𝟑

𝟐
)
∫
(𝝃 + 𝜶)

𝟏
𝟐

(𝒆𝝃 + 𝟏)
𝒅𝝃

∞

−𝜶

 

 

 After putting 𝜷(𝝐 − 𝝁) = 𝝃 and 𝜷𝝁 = 𝜶 the two integrals so called fermi integrals can 

be cast in a generic form and solved 

𝓕(𝜶) = ∫
𝔾(𝝃 + 𝜶)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

−𝜶

 

Where 𝔾(𝝃 + 𝜶) is a polynomial.  

 

 

Sommerfeld’s approach to solve Fermi integrals: 

To solve these types integrals an approach was suggested by Sommerfeld to study 

properties of metals at finite temperature and is as follows:  

This generic integral can can be written in the form  

 𝓕(𝜶) = ∫
𝔾(𝝃 + 𝜶)

𝒆𝝃 + 𝟏
 𝒅𝝃

𝟎

−𝜶

+∫
𝔾(𝝃 + 𝜶)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

 (47) 

Noting that  

𝟏

𝒆𝝃 + 𝟏
= 𝟏 −

𝟏

𝒆−𝝃 + 𝟏
 

(47) can be written as  
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𝓕(𝜶) = ∫ 𝔾(𝝃 + 𝜶) 
𝟎

−𝜶

𝒅𝝃 +∫
𝔾(𝝃 + 𝜶)

𝒆−𝝃 + 𝟏
 𝒅𝝃

𝟎

−𝜶

+∫
𝔾(𝝃 + 𝜶)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

= ∫ 𝔾(𝝃) 
𝜶

𝟎

𝒅𝝃 +∫
𝔾(𝜶 − 𝝃)

𝒆𝝃 + 𝟏
 𝒅𝝃

𝜶

𝟎

+∫
𝔾(𝝃 + 𝜶)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

= ∫ 𝔾(𝝃) 
𝜶

𝟎

𝒅𝝃 +∫
𝔾(𝝃 + 𝜶) − 𝔾(𝜶 − 𝝃)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

−∫
𝔾(𝜶 − 𝝃)

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝜶

 

(48) 

Again noting that 𝜶 ≫ 𝟏, the last term is of the  order of 𝒆−𝜶 and can be neglected. 

Numerator in the integrand of the second term can be expanded around 𝜶 to get 

𝔾(𝝃 + 𝜶) − 𝔾(𝜶 − 𝝃) = 𝟐𝝃 𝔾′(𝜶) +
𝝃𝟑

𝟑
𝔾′′′(𝜶)… 

Therefore (47) can be written as  

 𝓕(𝜶) =  ∫ 𝔾(𝝃) 
𝜶

𝟎

𝒅𝝃 + 𝟐 𝔾′(𝜶)∫
𝝃 

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

+
𝔾′′′(𝜶)

𝟑
∫

𝝃𝟑 

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

+⋯ (49) 

(49) involves integrals of the form ∫
𝝃𝒏 

𝒆𝝃+𝟏
 𝒅𝝃

∞

𝟎
, which can be evaluated as follows 

 

∫
𝒁𝒙−𝟏 

𝒆𝒁 + 𝟏
 𝒅𝒁

∞

𝟎

= ∫ 𝒆−𝒛𝒁𝒙−𝟏 (𝒆−𝒛 + 𝟏)−𝟏  𝒅𝝃
∞

𝟎

= ∫ 𝒆−𝒁𝒁𝒙−𝟏   ∑(−𝟏)𝒏 𝒆−𝒏𝒁
∞

𝒏=𝟎

  𝒅𝒁
∞

𝟎

= ∑(−𝟏)𝒏  

∞

𝒏=𝟎

∫ 𝒆−(𝒏+𝟏)𝒛 𝒁𝒙−𝟏 𝒅𝒛
∞

𝟎

= 𝚪(𝒙)∑(−𝟏) 𝒏+𝟏 
𝟏

𝒏𝒙
 

∞

𝒏=𝟏

= (𝟏 − 𝟐𝟏−𝒙)𝚪(𝒙)∑  
𝟏

𝒏𝒙
 

∞

𝒏=𝟏

= (𝟏 − 𝟐𝟏−𝒙)𝚪(𝒙)𝜻(𝒙) 

(50) 

Where 𝚪(𝒙) is gamma function  and 𝜻(𝒙) is Riemann-Zeta function for 𝒙 > 𝟎. 

Therefore,  

∫
𝝃 

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

= (𝟏−𝟐
𝟏−𝟐

)𝚪(𝟐)𝜻(𝟐)=
𝟏
𝟐
.𝟏.
𝝅𝟐

𝟔
=
𝝅𝟐

𝟏𝟐
 

And  

∫
𝝃𝟑 

𝒆𝝃 + 𝟏
 𝒅𝝃

∞

𝟎

= (𝟏−𝟐
𝟏−𝟒

)𝚪(𝟒)𝜻(𝟒)=
𝟕
𝟖
.𝟔.
𝝅𝟒

𝟗𝟎
= 
𝟕𝝅𝟒

𝟏𝟐𝟎
 

So that (49) may be written as 
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 𝓕(𝜶) =  ∫ 𝔾(𝝃) 
𝜶 

𝟎

𝒅𝝃 +
𝝅𝟐

𝟔
 𝔾′(𝜶)  +

𝟕 𝝅𝟒

𝟑𝟔𝟎
 𝔾′′′(𝜶) +⋯ (51) 

So when 𝔾(𝝃) = 𝝃
𝟏

𝟐  

 𝓕(𝜶) =  
𝟐

𝟑
 𝜶

𝟑

𝟐 + 
𝝅𝟐

𝟏𝟐
 𝜶−

𝟏

𝟐   +
𝟕 𝝅𝟒

𝟑𝟔𝟎
  (
𝟏

𝟐
) (−

𝟏

𝟐
) (−

𝟑

𝟐
) 𝜶−

𝟓

𝟐 +⋯ (52) 

And when 𝔾(𝝃) = 𝝃
𝟑

𝟐 

 𝓕(𝜶) =  
𝟐

𝟓
 𝜶

𝟓

𝟐 + 
𝟑𝝅𝟐

𝟏𝟐
 𝜶

𝟏

𝟐   +
𝟕 𝝅𝟒

𝟑𝟔𝟎
  (
𝟑

𝟐
) (
𝟏

𝟐
) (−

𝟏

𝟐
) 𝜶−

𝟑

𝟐 +⋯ (53) 

(b) Internal Energy 

So the internal energy can be calculated using (53) 

 

𝑼 =
𝟑

𝟐
𝑷𝑽 =

𝟑

𝟐

𝓖𝑽

𝝀𝟑
  𝒌𝑩𝑻 

𝟏

𝚪 (
𝟓

𝟐
)
∫
(𝝃 + 𝜶)

𝟑

𝟐

(𝒆𝝃 + 𝟏)
𝒅𝝃

∞

−𝜶

=   
𝟒𝝅𝓖𝑽

𝟓  
 (
𝟐𝒎 

𝒉𝟐
)

𝟑
𝟐

𝝁
𝟓

𝟐 [𝟏 +  
𝟓𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐 

+ 𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓  𝒕𝒆𝒓𝒎𝒔 ] 

(54) 

(c) Number Density and Fermi Energy 

Using (52) we can calculate number density 
𝑵

𝑽
   

 
𝑵

𝑽
=  

𝓖

𝝀𝟑
 
𝟏

𝚪 (
𝟑

𝟐
)
∫
(𝝃 + 𝜶)

𝟏
𝟐

(𝒆𝝃 +𝟏)
𝒅𝝃

∞

−𝜶

=
𝟒𝝅𝓖

𝟑
 (
𝟐𝒎 

 𝒉
𝟐
)

𝟑
𝟐

(𝝁) 
𝟑

𝟐  [𝟏 + 
𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
) 
𝟐

  +      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔 ] (55) 

At T=0, we get 𝝁 = 𝝁𝟎 = 𝝐𝑭 

 𝝁𝟎 = 𝝐𝑭  = (
𝟑𝑵

𝟒𝝅𝓖𝑽
)

𝟐

𝟑

 
𝒉𝟐 

 𝟐𝒎
 (56) 

Therefore, (55) becomes 

 
𝝁   = (

𝟑𝑵

𝟒𝝅𝓖𝑽
)

𝟐

𝟑

 
𝒉𝟐 

 𝟐𝒎
 [𝟏 + 

𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐

  +      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔 ]

−
𝟐

𝟑

≅ 𝝐𝑭[𝟏 − 
𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

 +      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] 

(57) 

A result which matches with equation (11) calculated earlier. Figure 3, shows plot of 
𝝁

𝝐𝑭
 vs 

𝑻

𝑻𝑭
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Figure 3 Temperature dependence of chemical potential of  Fermi gas 
𝝁

𝝐𝑭
 vs 

𝑻

𝑻𝑭
 

Using (56) and (57), and noting that 
𝟒𝝅𝓖𝑽

𝟑𝑵 
 (
𝟐𝒎 

𝒉𝟐
)

𝟑

𝟐
= (𝝐𝑭)

−𝟑/𝟐   we can get from (53) 

 

𝑼

𝑵
=   

𝟑

𝟓
 (𝝐𝑭)

−𝟑/𝟐(𝝐𝑭)
𝟓
𝟐 [𝟏− 

𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝁
)

𝟐

 +      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔]

𝟓/𝟐

[𝟏 +  
𝟓𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐 

+ 𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓  𝒕𝒆𝒓𝒎𝒔 ] 

(58) 

 

Or 
𝑼

𝑵
≅   

𝟑

𝟓
 𝝐𝑭 [𝟏− 

𝟓𝝅𝟐

𝟐𝟒
 (
𝒌𝑩𝑻

𝝁
)

𝟐

 + 
𝟓𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐 

+     𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (59) 

 

Or 
𝑼

𝑵
≅ 
𝟑

𝟓
 𝝐𝑭 [𝟏+ 

𝟓𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭
)

𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (60) 

(d) Pressure 

We can also get pressure 𝑷 of fermi gas from (59),  

 𝑷 =
𝟐

𝟑

𝑼

𝑽
 =

𝟐

𝟓
 
𝑵

𝑽
𝝐
𝑭
[𝟏+ 

𝟓𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭
)

𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (61) 

 

Or 
𝑷𝑽

𝑵𝒌𝑩𝑻𝑭
= 
𝟐

𝟓
  [𝟏+ 

𝟓𝝅𝟐

𝟏𝟐
 (
𝑻

𝑻𝑭
)

𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (62) 

𝝁

𝝐𝑭
 

𝑻

𝑻𝑭
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Temperature dependence of  𝑷𝑽

𝑵𝒌𝑩𝑻𝑭
 vs 

𝑻

𝑻𝑭
 is shown in figure 4 below 

 

Figure 4 Temperature dependence of  𝑷𝑽

𝑵𝒌𝑩𝑻𝑭
 vs 

𝑻

𝑻𝑭
  of  Fermi gas 

𝝁

𝝐𝑭
 vs 

𝑻

𝑻𝑭
 

(e) Low temperature specific heat 

Using (60), we can get low temperature specific heat at constant volume 

Or 
𝑪𝑽
𝑵𝒌𝑩

=
𝝅𝟐

𝟐

𝒌𝑩𝑻

𝝐𝑭
+⋯ = 

𝝅𝟐

𝟐

 𝑻

𝑻𝑭
+⋯ (63) 

Where 𝑻𝑭 =
𝝐𝑭

𝒌𝑩
 is called fermi temperature. Equation (63) shows that at low temperature 

specific heat varies linearly with  temperature, Figure 5, and is much smaller than the 

classical value of an ideal gas 3/2 .  

 

Figure 5 Temperature dependence of specific heat  of  Fermi gas 
𝑪𝑽

𝑵𝒌𝑩
  vs 

𝑻

𝑻𝑭
 

  (f) Helmholtz Free Energy 

𝑷𝑽

𝑵𝒌𝑩𝑻𝑭
 

𝑻

𝑻𝑭
 

𝑪𝑽
𝑵𝒌𝑩

 

 𝑻

𝑻𝑭
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Using equations (57) and (58) we can immediately calculate Helmholtz free energy 

 𝑭 = 𝝁𝑵 − 𝑷𝑽 (64) 

 

 𝑭 =
𝟑

𝟓
 𝑵𝝐𝑭 [𝟏 − 

𝟓𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭 
)
𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (65) 

(g) Entropy 

From (65) we can get entropy using 𝑺 = −(
𝝏𝑭

𝝏𝑻
) as 

 𝑺 =  𝑵𝒌𝑩 [ 
 𝝅𝟐

𝟐
 
𝒌𝑩𝑻

𝝐𝑭
 +  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] (66) 

Here one can see that third law of thermodynamics follows, since as 𝑻 → 𝟎 𝑺 → 𝟎 

6. Ideal Fermi Gas in a Magnetic Field   

As applications of study of ideal fermi systems we now turn our attention to the study of 

an ideal (non-interacting) Fermi gas at equilibrium in the presence of an external 

magnetic field. 

The practical realization of a fermion gas is electrons in metals and alkali metals are the 

best candidates in which fermion gas can be treated as a free degenerate electron gas. 

These electrons are moving, have a mass m, intrinsic spin ½ and a magnetic moment 

𝝁𝑩 =
𝒆ℏ

𝟐𝒎𝒄
 called Bohr magneton and a momentum 𝒑 = ℏ𝒌. On application of external 

magnetic field there are two possibilities: 

i. The magnetic moment of each electron gets aligned in the direction of the 

magnetic field which results in para-magnetism known as Pauli’s 

paramagnetism. Pauli was a student of Sommerfeld, and Sommerfeld had a lot of 

interest in improving the understanding of free electron theory of metals proposed 

earlier by Drude using Boltzmann statistics, He suggested Pauli to study this 

problem by applying new Fermi-Dirac statistics and Pauli became the first person 

to study the contribution of spin alignment to the magnetic moment of a 

degenerate electron gas .  

ii. Furthermore, since electrons are moving in the presence of magnetic field they 

follow a helical path under the influence of Lorentz force, such that current 

produced by them induces a magnetic field in a direction opposite to external 

magnetic field resulting in diamagnetism. This was studied first of all by Russian 

Physicist Lev Landau and is known after his name as Landau diamagnetism.   
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Here we propose to discuss these two effects in the context of a  degenerate fermi gas of 

electrons. 

6.1 Pauli Paramagnetism 

 

 

 

 

  

 

 

 

Let us take a total of N electrons confined a volume of a metal. In the absence of 

magnetic field the energy levels are filled up to Fermi level 𝝐𝑭, with as many number of 

electrons with up spin as with down  with no net magnetization, Figure 6(a).   When 

magnet field is applied 𝑵+ number of electrons get aligned parallel to 𝑩⃗⃗  and 𝑵− number 

of electrons get aligned anti-parallel to 𝑩⃗⃗ , Figure 6(b). Such that 𝑵 = 𝑵+ +𝑵−. The 

transfer of electrons from up spin state to down spin state takes place till the chemical 

potential is the same, Figure 6(c).  

An electron with spin up in the presence of magnetic field then has energy 

 𝝐+ =  
𝒑𝟐

𝟐𝒎
− 𝝁𝑩𝑩 (67) 

 

and energy of an electron with spin down  in the presence of a magnetic field 𝑩 is given 

by  

 𝝐_=
𝒑𝟐

𝟐𝒎
+ 𝝁

𝑩
𝑩 (68) 

If 𝑵+ > 𝑵−, there is net magnetization such that 

 𝑴 = 𝝁𝑩(𝑵+ −𝑵−) (69) 

𝜖(𝑘) 𝜖(𝑘) 𝜖(𝑘) 

𝑘 𝑘 𝑘 

2𝜇𝐵𝐵 

2𝜇𝐵𝐵 

(a) (b) (c) 

𝐵 ↑ 
𝐵 = 0 

Figure 6 (a) Free electrons without external magnetic field, 𝑵+ = 𝑵− =
𝑵

𝟐
; (b) In the presence of magnetic field 𝑩 

𝑵−  electrons move up by energy 𝝁𝑩𝑩, and 𝑵+ electrons move down by energy 𝝁𝑩𝑩; (c) To bring the chemical 

potential same electrons in the state ↑ move to state ↓, such that 𝑵+ > 𝑵− resulting in net magnetization 
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We define spin polarization 𝒓 as 

 𝒓 =
𝑵+ −𝑵−
𝑵+ +𝑵−

 (70) 

Such that  

 𝑵+ =
𝑵

𝟐
(𝟏 + 𝒓) (71) 

And  

 𝑵− =
𝑵

𝟐
(𝟏 − 𝒓) (72) 

(a) Case I: T=0 

At absolute zero all energy levels up to 𝝐𝑭are filled and above 𝝐𝑭are empty. So kinetic 

energy of the electrons with spin parallel to 𝑩 will lie between 0 and 𝝐𝑭 + 𝝁𝑩 and the 

electrons with spin antiparallel to B  will lie between 0 and 𝝐𝑭 − 𝝁𝑩. 

The number of electrons 𝑵+ with spin parallel and  𝑵− with spin antiparallel to B   can 

be obtained respectively as 

  𝑵+ =
𝟒𝝅𝑽

𝟑𝒉𝟑
(𝟐𝒎(𝝐𝑭 + 𝝁𝑩𝑩))

𝟑

𝟐 (73) 

And  

 𝑵− =
𝟒𝝅𝑽

𝟑𝒉𝟑
(𝟐𝒎(𝝐𝑭 − 𝝁𝑩𝑩))

𝟑

𝟐 (74) 

The net magnetic moment of the fermi electron gas can then be written as 

 𝑴 = (𝑵+ −𝑵−)𝝁𝑩 =
𝟒𝝅𝑽(𝟐𝒎)

𝟑

𝟐

𝟑𝒉𝟑
((𝝐𝑭 + 𝝁𝑩𝑩)

𝟑

𝟐 − (𝝐𝑭 − 𝝁𝑩𝑩)
𝟑

𝟐)𝝁𝑩 (75) 

In the low limit case, ie. 𝑩 → 𝟎, we can write it as 

 𝑴 = (𝑵+ −𝑵−)𝝁𝑩 =
𝟒𝝅𝑽(𝟐𝒎)

𝟑

𝟐

𝟑𝒉𝟑
(𝝐𝑭)

𝟏

𝟐𝟑𝝁𝑩
𝟐𝑩 (76) 

So that magnetic field susceptibility per unit volume 𝝌𝟎, can be written as 
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  𝝌𝟎 = 𝑴/𝑽𝑩 =
𝟒𝝅𝝁𝑩

𝟐  (𝟐𝒎)
𝟑

𝟐

𝒉𝟑
(𝝐𝑭)

𝟏

𝟐 (77) 

Recalling that 𝝐𝑭  = (
𝟑𝑵

𝟒𝝅𝓖𝑽
)

𝟐

𝟑
 
𝒉𝟐 

 𝟐𝒎
 and 𝓖 = 𝟐, we have 

 𝝌𝟎 = 𝑴/𝑽𝑩 = (𝑵+ −𝑵−)𝝁𝑩 =
𝝁𝑩
𝟐   

 (𝝐𝑭)
  
 
𝟑𝑵

𝟐𝑽
=
𝟑

𝟐

𝒏 𝝁𝑩
𝟐   

 (𝝐𝑭)
  
 (78) 

At T=0, the highest occupied energy level of group of up spin electrons {𝑵+}is at  

 
𝝐𝑭+ =

ℏ𝟐

𝟐𝒎
(
𝟔𝝅𝟐𝑵+
𝑽

)

𝟐

𝟑

=  
ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝑽
)

𝟐

𝟑

(𝟏 + 𝒓)
𝟐

𝟑 =
ℏ𝟐

𝟐𝒎
𝒌𝑭
𝟐(𝟏 + 𝒓)𝟐/𝟑

= 𝝐𝑭(𝟏 + 𝒓)
𝟐

𝟑 

(79) 

Similarly, at T=0, the lowest occupied energy level of group of down  spin electrons 
{𝑵−} is at 

 
𝝐𝑭− =

ℏ𝟐

𝟐𝒎
(
𝟔𝝅𝟐𝑵−
𝑽

)

𝟐

𝟑

=  
ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝑽
)

𝟐

𝟑

(𝟏 − 𝒓)
𝟐

𝟑 =
ℏ𝟐

𝟐𝒎
𝒌𝑭
𝟐(𝟏 − 𝒓)𝟐/𝟑

= 𝝐𝑭(𝟏 + 𝒓)
𝟐

𝟑 

(80) 

Case II: At Finite Temperature 

At finite temperature, 𝝐𝑭 needs to taken as 𝝐𝑭 (𝟏 −
𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

),  

Therefore. The energy difference between highest up spin energy level and down spin 

energy levels is given by, Figure 6(b) 

 𝝐𝑭[{(𝟏 + 𝒓)
𝟐

𝟑 − (𝟏 − 𝒓)
𝟐

𝟑}  −   
𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

{(𝟏 + 𝒓)−
𝟐

𝟑 − (𝟏 − 𝒓)−
𝟐

𝟑}] = 𝟐𝝁𝑩𝑩 (81) 

For small value of 𝒓<<1, equation (81) can be written as 

 
𝟒

𝟑
𝒓 𝝐𝑭 [ 𝟏 +  

𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] = 𝟐𝝁𝑩𝑩 (82) 

Such that, spin polarization r is 

 𝒓 ≈
𝟑

𝟐
 
𝝁𝑩𝑩

𝝐𝑭
   [ 𝟏 +  

𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] (83) 
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Then magnetization can be written as  

 𝑴 ≈ 𝝁𝑩𝒓𝑵 =
𝟑

𝟐
 
𝝁𝑩
𝟐𝑵𝑩

𝝐𝑭
   [ 𝟏 +  

𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] (84) 

Thus Pauli susceptibility  is given by 

 𝝌 ≈
𝑴

𝑩𝑽
=
𝟑

𝟐
 
𝝁𝑩
𝟐  𝑵

𝝐𝑭𝑽
   [ 𝟏 +  

𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] = 𝝌𝟎 [ 𝟏 +  
𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] (85) 

6.2 Landau Diamagnetism  

 Let us look at motion of a charged particle in  a uniform magnetic field 𝑩 applied in the 

direction of Z-axis. Such a charged particle follows a helical path with its axis in the 

direction of Z-axis amounting to linear motion in the direction of Z-axis and circular 

motion with angular frequency 
𝒆𝑩

𝒎𝑪
    in the x-y plane which can be visualized as a simple 

harmonic motion quantized in the units of 
𝒆𝑩

𝒎𝑪
ℏ. The linear energy in the direction of z-

axis is also quantized but energy intervals being very small it can be treated as 

continuous. 

For electrons in a metal, therefore the energy levels  in a magnetic field can be written as 

.   

 𝝐 =
𝒆ℏ𝑩

𝒎𝒄
(𝒏 +

𝟏

𝟐
) +

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
 (86) 

With n as an index of the each energy level. This means that energy levels or orbits in the 

𝒌𝒙, 𝒌𝒚 plane gets bunched into a set of allowed energy levels, called landau levels, Figure 

7, with the radius square in the 𝒌𝒙, 𝒌𝒚 plane given by  
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𝒌𝒙
𝟐 + 𝒌𝒚

𝟐 =
𝒆ℏ𝑩

𝒎𝒄
(𝒏 +

𝟏

𝟐
) 

(87) 

Let us now focus on the calculation of degeneracy of the nth  level is the total number of 

levels  

 

𝓖 =
𝟏

ℏ𝟐
𝟏

(𝟐𝝅)𝟐
∫𝒅𝒙 𝒅𝒚 𝒅𝒑𝒙 𝒅𝒑𝒚

= 
𝟏

ℏ𝟐(𝟐𝝅)𝟐
∫𝒅𝒙 𝒅𝒚 𝒅𝒌𝒙𝒅𝒌𝒚 =

𝟏

(𝟐𝝅)𝟐
𝑳𝒙𝑳𝒚. 𝟐𝝅

ℏ𝟐𝒌𝟐

𝟐
 

(88) 

 

Or 𝓖 =  
𝟐𝒎

ℏ𝟐(𝟐𝝅)𝟐
𝑳𝒙𝑳𝒚. 𝟐𝝅

ℏ𝟐𝒌𝟐

𝟐𝒎
=
𝑳𝒙𝑳𝒚

𝟒𝝅ℏ𝟐
𝟐𝒎 

𝒆𝑩

𝒎𝒄
ℏ{𝒏 + 𝟏) − 𝒏} =

𝑳𝒙𝑳𝒚

𝟐𝝅
  
𝒆𝑩

ℏ𝒄
 (89) 

There are two things worth noting: (i) Degeneracy 𝓖 is independent of 𝒏, (ii) stronger is 

the magnetic field higher is the degeneracy. 

The grand partition function can then be written by summing over all single particle 

states, as 

 𝐥𝐧 ℤ = 𝐥𝐧∑𝐥𝐧[𝟏 + 𝒆𝜷(𝝁−𝝐(𝒏,𝒌𝒛)]

𝝐

= 𝐥𝐧∑𝐥𝐧 [𝟏 + 𝒆
𝜷(𝝁−(

𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏,𝒑𝒛

 (90) 

 

𝑘𝑥 

Figure 1 Available landau orbits for a system of charged particles in 

the presence of a magnetic field in the direction of Z-axis 

𝒌𝒚 
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Or 

𝐥𝐧 ℤ =  𝓖 ∫𝒅𝒛 𝒅𝒌𝒛  ∑𝐥𝐧 [𝟏 + 𝒆
𝜷(𝝁−(

𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏

=  𝓖
𝑳𝒁
𝟐𝝅
  ∫  𝒅𝒌𝒛  ∑ 𝐥𝐧 [𝟏 + 𝒆

𝜷(𝝁−(
𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏

=   
𝑳𝒙𝑳𝒚
(𝟐𝝅)𝟐

  
𝒆𝑩

ℏ𝒄
𝑳𝒁  ∫  𝒅𝒌𝒛  ∑𝐥𝐧 [𝟏 + 𝒆

𝜷(𝝁−(
𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏

= 
 𝑽

(𝟐𝝅)𝟐
𝒎

ℏ
 
𝒆𝑩

𝒎𝒄
 ∫  𝒅𝒌𝒛  ∑ 𝐥𝐧 [𝟏 + 𝒆

𝜷(𝝁−(
𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏

= 
 𝑽

(𝟐𝝅)𝟐
𝒎𝝎

ℏ
  ∫  𝒅𝒌𝒛  ∑ 𝐥𝐧 [𝟏 + 𝒆

𝜷(𝝁−(
𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

]

𝒏

 

(91) 

The integral obtained above  can not be solved analytically in a closed form. However, in 

the high temperature limit, 𝒆𝜷𝝁 ≪ 𝟏,  𝐥𝐧 [𝟏 + 𝒆
𝜷(𝝁−(

𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

] can be 

approximated using 𝐥𝐧(𝟏 + 𝒙) ≈ 𝒙 so that  

Or 

𝐥𝐧 ℤ =  
 𝑽

(𝟐𝝅)𝟐
𝒎𝝎

ℏ
  ∫  𝒅𝒌𝒛 

∞

−∞

∑𝒆
𝜷(𝝁−(

𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
)+

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
))

𝒏

= 
 𝑽

(𝟐𝝅)𝟐
𝒎𝝎

ℏ
 𝒆𝜷𝝁  ∫  𝒅𝒌𝒛 

∞

−∞

𝒆
−𝜷( 

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
)
∑𝒆

−𝜷(
𝒆ℏ𝑩

𝒎𝒄
(𝒏+

𝟏

𝟐
))

𝒏

 

(92) 

Noting that, 

∫  𝒅𝒌𝒛 
∞

−∞

𝒆
−𝜷( 

ℏ𝟐𝒌𝒛
𝟐

𝟐𝒎
)
= √

𝟐𝝅𝒎𝒌𝑩𝑻

ℏ𝟐
=
𝟏

𝝀
𝟐𝝅 

And  

∑𝒆−(𝒏+
𝟏

𝟐
)𝒙

∞

𝒏=𝟎

= 
𝒆−

𝒙

𝟐

𝟏 − 𝒆−𝒙
=

𝟏

𝒆
𝒙

𝟐 − 𝒆−
𝒙

𝟐

=
𝟏

𝟐 𝐬𝐢𝐧𝐡 (
𝒙

𝟐
)
  

Equation (92) becomes 
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Or 𝐥𝐧 ℤ =    
 𝑽

𝒌𝑩𝑻(𝟐𝝅)
𝟐

𝒎𝒌𝑩𝑻𝝎

ℏ
 𝒆𝜷𝝁 √

𝟐𝝅𝒎𝒌𝑩𝑻

ℏ𝟐
 

𝟏

𝟐 𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)
 (93) 

 

Or 𝐥𝐧 ℤ =    
 𝑽𝒉𝝎

𝒌𝑩𝑻(𝟐𝝅)
𝟐

𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
 𝒆𝜷𝝁 √

𝟐𝝅𝒎𝒌𝑩𝑻

ℏ𝟐
 

𝟏

𝟐 𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)
 (94) 

 

Or 𝐥𝐧 ℤ =    
  𝑽 

 𝒌𝑩𝑻

𝒆ℏ𝑩

𝟐𝒎𝒄
𝒆𝜷𝝁  

𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
 √
𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
 

𝟏

𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)
 (95) 

 

Or 𝐥𝐧 ℤ =  
𝑽

𝝀𝟑
 𝒆𝜷𝝁   

𝝁𝑩𝑩

𝒌𝑩𝑻

𝐬𝐢𝐧𝐡(𝜷 𝝁𝑩𝑩 )
  =  

𝑽

𝝀𝟑
 
𝝁𝑩𝑩

𝒌𝑩𝑻
  

𝒆𝜷𝝁

𝐬𝐢𝐧𝐡(𝜷 𝝁𝑩𝑩 )
 (96) 

 

Putting 𝒆𝜷𝝁 = 𝒁, and recalling that equilibrium number 𝑵̅ = 𝒁
𝝏 𝐥𝐧ℤ

𝝏𝒁
 

We get  

Or 

𝑵̅ = 𝒁 (
𝝏 𝐥𝐧ℤ

𝝏𝒁
)
𝑩,𝑽,𝑻

=     𝑽
𝒆ℏ

𝟐𝒎𝑪

𝑩

𝒌𝑩𝑻
  
𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
  √
𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
 

𝒆𝜷𝝁

𝟐 𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)

=
𝑽𝝁𝑩𝑩

𝒌𝑩𝑻

𝟏

𝝀𝟑
 

𝒆𝜷𝝁

𝟐 𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)
 

(97) 

 

Or 𝒏 =
𝑵̅

𝑽
 =

𝝁𝑩𝑩

𝒌𝑩𝑻

𝟏

𝝀𝟑
 

𝒆𝜷𝝁

𝟐 𝐬𝐢𝐧𝐡 (𝜷
ℏ𝝎

𝟐
)
= 𝒆𝜷𝝁

𝟏

𝝀𝟑
 

𝝁𝑩𝑩

𝒌𝑩𝑻

𝟐 𝐬𝐢𝐧𝐡 (
𝝁𝑩𝑩

𝒌𝑩𝑻
)

 (98) 

Furthermore, using (96) and (98),  magnetic moment of the gas is given by  
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Or 

𝑴 =
𝟏

𝜷
(
𝝏

𝝏𝑩
𝐥𝐧ℤ)

𝒁,𝑽,𝑻
= 

𝑽

𝝀𝟑
𝒆𝜷𝝁𝝁𝑩  

𝝏

𝝏
𝝁𝑩

𝒌𝑩𝑻

(

𝝁𝑩𝑩

𝒌𝑩𝑻
 

𝐬𝐢𝐧𝐡 (
𝝁𝑩𝑩

𝒌𝑩𝑻
 )
) =    

= 𝝁𝑩  (
𝑽

𝝀𝟑
  

𝝁𝑩𝑩

𝒌𝑩𝑻
 𝒆𝜷𝝁

𝐬𝐢𝐧𝐡𝒙
) (

𝟏

 
𝝁𝑩𝑩

𝒌𝑩𝑻

− 𝐜𝐨𝐭𝐡
𝝁𝑩𝑩

𝒌𝑩𝑻
 )

=   𝝁𝑩 𝑵̅  (
𝟏
𝝁𝑩𝑩

𝒌𝑩𝑻

− 𝐜𝐨𝐭𝐡
𝝁𝑩𝑩

𝒌𝑩𝑻
 ) 

(99) 

  

Or 𝑴 = −𝝁𝑩 𝑵 (𝐜𝐨𝐭𝐡 𝒙 −
𝟏

𝒙
) = −𝑵𝝁𝑩𝑳(𝒙) (100) 

Where =
𝝁𝑩𝑩

𝒌𝑩𝑻
 ,  𝑵̅ = 𝑵 and 𝑳(𝒙) is the Langevin function we encountered in the study of  

paramagnetism.  

However, note that for 𝒙 > 𝟎, 𝑳(𝒙) > 𝟎, therefore, the presence of negative sign, 

indicates that this is a signature of diamagnetism. For 𝒙 ≪ 𝟏, the weak field case, 

𝐜𝐨𝐭𝐡 𝒙 −
𝟏

𝒙
~
𝒙

𝟑
, and hence  

 

Or 
𝑴 = −𝝁𝑩 𝑵

𝒙

𝟑
= −

𝟏

𝟑
𝑵𝝁𝑩

𝟐
 𝑩

𝒌𝑩𝑻
 (101) 

The corresponding diamagnetic susceptibility then can be written as 

Or 𝝌 =
𝑴

𝑽
= −𝝁𝑩

𝑵

𝑽

𝒙

𝟑
= −

𝟏

𝟑
𝒏𝝁𝑩

𝟐
 𝑩

𝒌𝑩𝑻
 (102) 

That is diamagnetic susceptibility is inversely proportional to temperature 𝑻, a law 

similar to Curie law. 

  



  
____________________________________________________________________________________________________ 

Physics 
 

PAPER No. 10 : Statistical Mechanics 

MODULE No.18 :  Ensemble Theory(Quantum)-II Ideal Fermi Gas 

 

7. Summary 

In this module we have learnt 

 That quantum statistical ensembles involves double averaging one corresponding 

to quantum mechanical averaging and the other corresponding to statistical 

averaging. 

 That quantum effects become pronounced when the inter-particle distance 

between the particles is comparable to their average de Broglie Wavelength and 

wave functions of different particles overlap and system can-not be treated 

classically. The gas is then said to be degenerate. This happens when fermion gas 

has very low temperature or very high density. 

 That Fermi distribution function in the limit 
𝝐𝒌−𝝁

𝒌𝑩𝑻
≫ 𝟏,   transforms into 𝒆

−
𝝐𝒌−𝝁

𝒌𝑩𝑻  

which is nothing but Boltzmann distribution function. 

 That at 𝑻 = 𝟎 Fermi distribution function is a step fumction such  that for 𝝐 < 𝝐𝑭 

𝒇(𝝐) = 𝟏 and for 𝝐 < 𝝐𝑭 𝒇(𝝐) = 𝟎. 

 How to derive following physical quantities, for Fermi Gas at T=0 

(a) Number Density 𝑵

𝑽
=   

𝓖𝒌𝑭
𝟑  

𝟑 𝝅𝟐
   

(b) Fermi wave vector,    

𝒌𝑭 = (
𝟑𝝅𝟐𝑵

𝓖𝑽
)

𝟏

𝟑

 

(c) Fermi Energy 

𝝐𝑭 =
ℏ𝟐𝒌𝑭

𝟐

𝟐𝒎
  =

ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝓖𝑽
)

𝟐

𝟑

 

(d) Total Energy  
𝑬𝒐  =

𝓖

𝟐 
 
𝟑𝑵𝝐𝑭
𝟓

 

(e) Pressure 
𝑷 = 

𝓖

𝟐 

𝟐𝑵 

𝟓𝑽
 𝝐𝑭 

(f) Fermi Temperature 

𝑻𝑭 =
ℏ𝟐

𝟐𝒎
(
𝟑𝝅𝟐𝑵

𝑽
)

𝟐

𝟑

 

 How to derive following physical quantities, for Fermi Gas at 𝑻 ≠ 𝟎 and for a 

non-degenerate fermi gas 

 Physical 

Property 

Fermi Gas at 𝑻 ≠ 𝟎 Non-degenerate Fermi gas 

(a) Equation of 

State   

 

𝑷𝑽

𝑵𝒌𝑩𝑻
=
𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
 

𝑷𝑽 = 𝑵𝒌𝑩𝑻 
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(b) Number 

density 

𝑵

𝑽
=   

𝓖

𝝀𝟑
 𝒇𝟑

𝟐

(𝒁) 
𝑵

𝑽
=  

𝓖

𝝀𝟑
  

(c) 
Internal 

Energy 𝑼 = 
𝟑

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
=  
𝟑

𝟐
𝑷𝑽 

𝑼 =  =  
𝟑

𝟐
𝑷𝑽 

(d) 
Specific heat  𝑪𝑽

𝑵𝑲𝑩
=   

𝟏𝟓

𝟒

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
−
𝟗

𝟒
  (
𝒇𝟑
𝟐

(𝒁)

𝒇𝟏
𝟐

(𝒁)
) 𝑪𝑽 =

𝟑

𝟐
 𝑵𝒌𝑩 

(e) 
Helmholtz 

free energy 
𝑨 =  𝑵𝒌𝑩𝑻(𝐥𝐧𝒁 −

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒁)
) 

𝑨 =  𝑵𝒌𝑩𝑻(𝐥𝐧𝒁 − 𝟏)  

(f) 
Entropy 

𝑺 =  (
𝟓

𝟐
𝑵𝒌𝑩𝑻

𝒇𝟓
𝟐

(𝒛)

𝒇𝟑
𝟐

(𝒛)
− 𝐥𝐧𝒁) 

𝑺 =  

= (
𝟓

𝟐
𝑵𝒌𝑩𝑻 − 𝐥𝐧 (

𝑵𝝀𝟑

𝑽𝓖
)) 

 

 How to solve fermi integrals by Sommerfeld’s approach and derive 

thermodynamic properties of Fermi Gas at finite but low temperature   

 Physical 

Property 

Fermi Gas at low  and finite but low temperature 

(a) Equation of 

State   

𝑷𝑽

𝑵𝒌𝑩𝑻𝑭
= 
𝟐

𝟓
  [𝟏+ 

𝟓𝝅𝟐

𝟏𝟐
 (
𝑻

𝑻𝑭
)

𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] 

(b) Number 

density 

𝑵

𝑽
=  =

𝟒𝝅𝓖

𝟑
 (
𝟐𝒎 

 𝒉
𝟐
)

𝟑
𝟐

(𝝁) 
𝟑

𝟐  [𝟏 + 
𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
) 
𝟐

  +      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔 ] 

(c) Chemical 

Potential 
𝝁   = (

𝟑𝑵

𝟒𝝅𝓖𝑽
)

𝟐

𝟑

 
𝒉𝟐 

 𝟐𝒎
 [𝟏 + 

𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐

  

+      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔 ]

−
𝟐

𝟑

≅ 𝝐𝑭[𝟏 − 
𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

 

+      𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] 

(d) 
Internal 

Energy 𝑼 =  
𝟒𝝅𝓖𝑽

𝟓  
 (
𝟐𝒎 

𝒉𝟐
)

𝟑
𝟐

𝝁
𝟓

𝟐 [𝟏 +  
𝟓𝝅𝟐

𝟖
 (
𝒌𝑩𝑻

𝝁
)
𝟐 

+ 𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓  𝒕𝒆𝒓𝒎𝒔 ] 

(e) 
Specific heat  𝑪𝑽

𝑵𝒌𝑩
=
𝝅𝟐

𝟐

𝒌𝑩𝑻

𝝐𝑭
+⋯ = 

𝝅𝟐

𝟐

 𝑻

𝑻𝑭
+⋯ 

(f) 
Helmholtz 

free energy 𝑭 =
𝟑

𝟓
 𝑵𝝐𝑭 [𝟏 − 

𝟓𝝅𝟐

𝟏𝟐
 (
𝒌𝑩𝑻

𝝐𝑭 
)
𝟐

+  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] 
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(g) 
Entropy 

𝑺 =   𝑵𝒌𝑩𝑭 [ 
 𝝅𝟐

𝟐
 
𝒌𝑩𝑻

𝝐𝑭
 +  𝒉𝒊𝒈𝒉𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔] 

 That pauli paramagnetism is a result of  contribution of spin alignment of 

electrons in the presence of an external magnetic field to the magnetic moment of 

a degenerate electron gas 

 That Pauli Susceptibility at 𝑻 = 𝟎 is given by  

𝝌𝟎 =
𝟒𝝅𝝁𝑩

𝟐  (𝟐𝒎)
𝟑

𝟐

𝒉𝟑
(𝝐𝑭)

𝟏

𝟐 

 That Pauli Susceptibility at finite 𝑻is given by 

𝝌 ≈  
𝟑

𝟐
 
𝝁𝑩
𝟐  𝑵

𝝐𝑭𝑽
   [ 𝟏 +  

𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] = 𝝌𝟎 [ 𝟏 +  
𝝅𝟐

𝟏𝟐
(
𝒌𝑩𝑻

𝝐𝑭
)
𝟐

] 

 That  since in the presence of magnetic field a moving electron  follows a helical 

path under the influence of Lorentz force, such that current produced by them 

induces a magnetic field in a direction opposite to external magnetic field 

resulting in diamagnetism called  Landau diamagnetism. 

 That Landau diamagnetic susceptibility is given by  

𝝌𝒅𝒊𝒂 =
𝑴

𝑽
= −𝝁𝑩 𝑵 (𝐜𝐨𝐭𝐡 𝒙 −

𝟏

𝒙
) = −𝑵𝝁𝑩𝑳(𝒙) 

Where 𝑳(𝒙) is Langevin function and =
𝝁𝑩𝑩

𝒌𝑩𝑻
 , which for 𝒙 << 𝟏 i.e. for a weak 

field case gives 

𝝌𝒅𝒊𝒂 =
𝑴

𝑽
= −𝝁𝑩

𝑵

𝑽

𝒙

𝟑
= −

𝟏

𝟑
𝒏𝝁𝑩

𝟐
 𝑩

𝒌𝑩𝑻
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Appendices 

A1 Calculation of Density of States 

In module VII, we looked at the problem of particle in a cubical box and found solution 

of a particle in a cubical box, without loss of generality we can consider this particle in a 

cuboid of length 𝑳𝒙, 𝑳𝒚 𝒂𝒏𝒅 𝑳𝒛. The solution of the schrodinger equation in three 

dimensions can be written as  

𝝍 = 𝑨 𝐬𝐢𝐧 𝒙𝒌𝒙 𝐬𝐢𝐧 𝒚𝒌𝒚 𝐬𝐢𝐧 𝐳𝒌𝒛 

Where 𝒌𝒙 =
𝒏𝒙𝝅

𝑳𝒙
, 𝒌𝒚 =

𝒏𝒚𝝅

𝑳𝒚
 and 𝒌𝒛 =

𝒏𝒛𝝅

𝑳𝒛
 are the components of the wave vector 𝒌⃗⃗ ;  𝒏𝒙, 

𝒏𝒚 and 𝒏𝒛 are three quantum numbers taking integer values 1,2,3 …. ………. and 𝑨 =

(
𝟐

𝑳𝒙𝑳𝒚𝑳𝒛
)
𝟑/𝟐

. Hence momentum 𝒑 is quantized and energy of the energy levels is  

𝑬 =
ℏ𝟐𝝅𝟐

𝟐𝒎
[
𝒏𝒙
𝟐

𝑳𝒙
𝟐
+
𝒏𝒚
𝟐

𝑳𝒚
𝟐
+
𝒏𝒛
𝟐

𝑳𝒛
𝟐
] 

We note that as size of the box becomes larger and larger, energy becomes almost 

continuous. In the limiting case, 𝑬𝒏𝒙,𝒏𝒚,𝒏𝒛 − 𝑬𝒏𝒙−𝟏,𝒏𝒚−𝟏,𝒏𝒛−𝟏 = 𝚫𝑬𝒏𝒙,𝒏𝒚,𝒏𝒛 become very 

small. So 𝑬 can be treated as a continuous variable of quantum numbers. For a fixed 

value of 𝒌𝒚 and 𝒌𝒛, the number 𝚫𝒏𝒙 of possible integers when 𝒌𝒙 lies between 𝒌𝒙 and 

𝒌𝒙  + 𝒅𝒌𝒙 equals  

𝚫𝒏𝒙 =
𝑳𝒙
𝝅
𝒅𝒌𝒙 

Therefore, the number of states between 𝒌𝒙 and 𝒌𝒙  + 𝒅𝒌𝒙, between 𝒌𝒚 and 𝒌𝒚  + 𝒅𝒌𝒚, 

𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝒌𝒛 𝐚𝐧𝐝 𝒌𝒛  + 𝒅𝒌𝒛 are  

𝚫𝒏𝒙𝚫𝒏𝒚𝚫𝒏𝒛 =
𝑳𝒙
𝝅

𝑳𝒚

𝝅

𝑳𝒛
𝝅
𝒅𝒌𝒙𝒅𝒌𝒚𝒅𝒌𝒛 =

𝑽

𝝅𝟑
 𝒅𝟑𝒌 

If we suppose 𝓓(𝒌) is the density of states i.e. number of states in the unit interval 

around 𝒌. Then the number of states between 𝒌 and 𝒌 + 𝒅𝒌 is 𝓓(𝒌) 𝐝𝟑𝒌 =
𝑽

𝟖𝝅𝟑
 𝒅𝟑𝒌, 

here the factor of 8 in the denominator arises from the fact that since 𝒌𝒙, 𝒌𝒚 and 𝒌𝒛 are 

positive definite only volume of one octant  should contribute. 

Thus  

𝓓(𝒌) =
𝑽

(𝟐𝝅)𝟑
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Generalising it to one-dimension, two dimensions,  three dimensions and d dimensions 

we get  

 

∑𝒇(𝝐𝒌)

𝒌

=

{
 
 
 
 

 
 
 
 

𝑳

(𝟐𝝅)
∫𝒇(𝝐𝒌) 𝒅𝒌 =  ∫𝓓(𝒌)𝒇(𝝐𝒌)𝒅

𝟏𝒌 𝒊𝒏 𝒐𝒏𝒆 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏

𝑨

(𝟐𝝅)𝟐
∫𝒇(𝝐𝒌)𝒅

𝟐𝒌 = ∫𝓓(𝒌)𝒇(𝝐𝒌)𝒅
𝟐𝒌  𝒊𝒏 𝒕𝒘𝒐 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

𝑽

(𝟐𝝅)𝟑
∫𝒇(𝝐𝒌)𝒅

𝟑𝒌 = ∫𝓓(𝒌)𝒇(𝝐𝒌)𝒅
𝟑𝒌  𝒊𝒏 𝒕𝒉𝒓𝒆𝒆 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

𝑳𝒅

(𝟐𝝅)𝒅
∫𝒇(𝝐𝒌)𝒅

𝒅𝒌 =  ∫𝓓(𝒌)𝒇(𝝐𝒌)𝒅
𝒅𝒌 𝒊𝒏  𝒅 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔

 

 

A2 Fermi Dirac Integrals 

The integrals of the following type encountered in this module are called Fermi Dirac 

integrals 

𝒇𝝂(𝒛) =
𝟏

𝚪(𝝂)
 ∫

𝒙 𝝂−𝟏

(𝒁−𝟏𝒆𝒙 + 𝟏)
𝒅𝒙

∞

𝟎

   

It has following interesting properties: 

(a) For small 𝒁, the factor  
𝟏

(𝒁−𝟏𝒆𝒙+𝟏)
  in the integrand can be written as 

 
𝒁𝒆−𝒙(𝟏 + 𝒁𝒆−𝒙)

−𝟏
 and can be expanded as given below 

 𝒁𝒆−𝒙(𝟏 + 𝒁𝒆−𝒙)−𝟏 = 𝒁𝒆−𝒙(𝟏 + (−𝟏)𝒁𝒆−𝒙 +
(−𝟏)(−𝟐)

𝟐!
(𝒁𝒆−𝒙)𝟐 +

(−𝟏)(−𝟐)(−𝟑)

𝟑!
(𝒁𝒆−𝒙)𝟑 +⋯

= (𝒁𝒆−𝒙 + (−𝟏)(𝒁𝒆−𝒙)𝟐 + (𝒁𝒆−𝒙)𝟑 + (−𝟏)(𝒁𝒆−𝒙)𝟒 +⋯ = ∑(−𝟏)𝒍−𝟏
∞

𝒍=𝟏

𝒁𝒆−𝒙 

𝒇𝝂(𝒛) =  
𝟏

𝚪(𝝂)
 ∫ 𝒙 𝝂−𝟏  ∑(−𝟏)𝒍−𝟏

∞

𝒍=𝟏

(𝒁𝒆−𝒙)𝒍 𝒅𝒙

∞

𝟎

 

Let us now look at the lth term of the integral 

(−𝟏)𝒍−𝟏𝒁𝒍∫ 𝒙 𝝂−𝟏𝒆−𝒍𝒙   𝒅𝒙

∞

𝟎

 

Put 𝒍𝒙 = 𝒚 in the above integral, we get 𝒅𝒙 =
𝒅𝒚

𝒍
 and it takes the form 
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(−𝟏)𝒍−𝟏
𝒁𝒍

𝒍𝝂
∫(𝒚) 𝝂−𝟏 𝒆−𝒚  𝒅𝒚

∞

𝟎

= (−𝟏)𝒍−𝟏
𝒁𝒍

𝒍𝝂
 𝚪(𝝂) 

Therefore,  

𝒇𝝂(𝒛) =   ∑(−𝟏)𝒍−𝟏
∞

𝒍=𝟏

 
𝒁𝒍

𝒍𝝂
= 𝒛 −

𝒛𝟐

𝟐𝝂
 +
𝒛𝟑

𝟑𝝂
−⋯ 

(b)  The integral 𝒇𝝂(𝒛) satisfies the following recurrence relation which can be easily 

verified from the series   given above 

𝒁
 𝝏𝒇𝝂(𝒛)

𝝏𝒛
= 𝒇𝝂−𝟏(𝒛) 

 

  


